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Abstract—Prosodic phrasing is an important factor that affects
naturalness and intelligibility in text-to-speech synthesis. Studies
show that deep learning techniques improve prosodic phrasing
when large text and speech corpus are available. However, for
low-resource languages, such as Mongolian, prosodic phrasing
remains a challenge for various reasons. First, the database suitable
for system training is limited. Second, word composition knowledge
that is prosody-informing has not been used in prosodic phrase
modeling. To address these problems, in this article, we propose a
feature augmentation method in conjunction with a self-attention
neural classifier. We augment input text with morphological and
phonological decompositions of words to enhance the text encoder.
We study the use of self-attention classifier, that makes use of global
context of a sentence, as a decoder for phrase break prediction. Both
objective and subjective evaluations validate the effectiveness of
the proposed phrase break prediction framework, that consistently
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improves voice quality in a Mongolian text-to-speech synthesis
system.

Index Terms—Mongolian speech synthesis, prosodic phrasing,
phrase break prediction, self-attention, morphological and
phonological features.

I. INTRODUCTION

ACCURATE prosodic phrasing improves text-to-speech
(TTS) synthesis [1]–[5], that can be achieved by phrase

break prediction [6]–[8]. Prosodic phrasing breaks a long ut-
terance into prosodic units according to syntactic structure or
intonational properties, that improves the naturalness and in-
telligibility of speech. More importantly, in speech synthesis,
phrase breaking is often the first step in generating a prosody
pattern, such as intonation prediction and duration modeling [9]–
[11]. Any errors made in the phrase breaking are propagated
to other downstream prosodic models, resulting in unnatural
speech [12]–[14]. Nonetheless, some newly developed speech
synthesis systems, such as Tacotron [15]–[21], WaveNet-based
approaches [22]–[28], and Deep Voice [29] have not specifi-
cally modeled prosodic cues from input text. Therefore, they
cannot explicitly control prosodic phrasing [30]. It remains a
challenging research problem in speech synthesis [31] to identify
prosodic phrase breaks from input text, that is the focus of this
paper.

Statistical modeling approaches to prosodic phrasing include
maximum entropy models [32], [33], hidden Markov models
[34], and conditional random fields (CRF) [35], [36], which are
trained with a large set of labeled data. Such methods build the
models based on linguistic features, for example, part of speech
(POS) and length of word [37], [38], that are discrete represen-
tations of words and their syntax. Deep learning approaches
[39]–[41], such as deep neural networks (DNNs), recurrent
neural networks (RNNs), bidirectional long short-term memory
(BiLSTM), and representation learning [42]–[44], open the
opportunities to represent the linguistic features in a continuous
space, and to discover useful features from unlabeled data. For
example, word embeddings are commonly used [45]–[53] to
represent words and their syntax, which are used as input to
predict prosodic breaks.

In [45], Watts et al. propose to use continuous-valued word
embeddings, that summarize the distributional characteristics of
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word types, as surrogates of POS features. In [48], Vadapalli
and Gangashetty propose to use an RNN to predict phrase
breaking of a word embedding sequence. These methods benefit
from the context modeling ability of RNN. Despite the success,
RNN modeling has its limitation. Due to its autoregressive
nature, RNN faces considerable challenges when processing
long sequences [54]. Self-attention [55] provides an alternative
solution, which is effective in various sequential modeling tasks,
such as machine translation [55], semantic role labeling [56],
speech recognition [57], [58] and speech synthesis [59], [60],
and recently prosodic phrasing [61].

The above prior studies, that use RNN or self-attention to
model prosodic phrasing, achieve good performance in English
and Mandarin applications. However, these models do not work
well for highly agglutinative, low-resource, and morphologi-
cally rich languages, such as Mongolian, because there is a
lack of training data for low-resource agglutinative languages
[62]. As a result, the models produce poor prosodic phrasing for
Mongolian sentences that generally contain a substantial number
of out-of-vocabulary (OOV) words.

We note that morphological and phonological decompositions
of words, referred to as subwords, are prosody-informing [63].
By using subword embeddings in addition to whole word embed-
dings as input, we address two problems. First, there are much
fewer subwords than agglutinative whole words, therefore, we
expect that subword embeddings are more reliable than whole
word embeddings; Second, subwords are prosody-informing
that directly contribute to phrase break prediction. We propose to
use continuous-valued embeddings to represent lexical words,
morphological subwords, and phonological subwords, and use
the sequence of embeddings as the input for phrase break pre-
diction. Furthermore, we include an attention layer in the text
encoders that learns to weight the relative contributions of the
various embeddings.

While there have been studies on the use of prosody-related
linguistic features [64] and subwords, such as character, stem,
and suffix [53], [65], to predict phrase breaks, this work is
different from the prior work in many ways,
� For the first time, we propose the use of morphological

and phonological decompositions of words to augment the
input text for Mongolian prosodic phrasing.

� Unlike the prior work, where multiple linguistic features
are concatenated directly, we propose an attention layer
that learns to weight word and subword embeddings in the
text encoder.

� Phrase break prediction is based on temporal information
beyond adjacent words. We adopt a self-attention neural
classifier, which handles long range dependency of words
better than RNN [55].

This work is an extension to our previous work [66] with
several novel contributions,
� A novel strategy is proposed to incorporate word, mor-

pheme, syllable, and phoneme embeddings into phrase
break prediction model.

� An attention layer is studied to weight various embeddings
in the text encoders, that enhances word embeddings for
phrase break prediction.

Fig. 1. Illustration of a text encoder and a self-attention neural classifier
for phrase break prediction. The text encoder extracts word embeddings from
input text; The neural classifier consists of N self-attention blocks that produce
context-dependent intermediate representations, which are taken by the output
layer for decision making.

� A self-attention neural classifier is proposed in conjunc-
tion with various text encoders through a comprehensive
comparative study.

The remainder of this paper is organized as follows: in Sec-
tion II, we study a basic self-attention framework for phrase
break prediction. In Section III, we present the proposed en-
hanced text encoders that benefit from morphological and
phonological information. We report the experiments in Sec-
tion IV. Finally, Section V concludes the study.

II. BASIC SELF-ATTENTION MODEL FOR PROSODIC PHRASING

We first introduce a basic self-attention model for Mongolian
prosodic phrase prediction, that represents the overall phrase
break prediction framework. The prosodic phrasing model takes
a sequence of words as input and generates their prosodic phrase
break labels. The network structure is illustrated in Figure 1,
which includes (1) a text encoder that encodes input text into
a sequence of word embeddings; (2) a self-attention neural
classifier, consisting of a self-attention layer and an output layer,
that predicts the phrase break labels.

A. Text Encoder

The text encoder is designed to map input text into a sequence
of word embeddings ω. There are many ways to implement the
text encoder. An easy way is to use pre-trained word embedding,
where a word embedding can be retrieved through table lookup.
A word embedding network can be trained [42]–[44] from a text
corpus. In this work, the skip-gram model [42], which performs
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well for low-frequency words [43], is adopted to train the word
embedding network.

Specifically, given a text corpus, the skip-gram model defines
the embedding vector of each word via the matrix W e and
defines the context vector by means of the output matrix W c.
Given an input word wI , let us label the corresponding row of
W e as vector vwI

, which serves as the word embedding ω after
skip-gram model is completed, and its corresponding column of
W c as v′wI

(context vector). The output layer applies softmax to
compute the probability of predicting the output word wO given
wI . Therefore,

p(wO|wI) =
exp(v′�wO

vwI
)

∑V
n=1 exp(v

′�
wn

vwI
)

(1)

where O and I denote the index of output and input words in
the vocabulary, and V is the vocabulary size.

The above learning process yields word embeddings that
are distributed in a continuous semantic space; the position
information of the words, which is crucial to the global context
[55], is not fully modeled. To encode the position of each input
word, sine and cosine functions of different frequencies [55] are
adopted to represent the position encoding π of a word:

π(t, 2i) = sin(t/100002i/d) (2)

π(t, 2i+ 1) = cos(t/100002i/d) (3)

where t is the word position and i denotes the element in a
d-dimensional encoding. As π vector has the same dimension
as ω vector, they can be added to form a position-aware word
embedding

x = π + ω (4)

Finally, the input sentence is encoded into a sequence of
position-aware word embeddings x = {x1, x2, ..., xT }.

B. Self-Attention Layer

The main objective of the self-attention layer is to capture
long-range dependency between word pairs in a sentence by
using the attention weights. The layer consists of N identical
self-attention blocks that contain a recurrent sublayer and a
self-attention sublayer. The output layer is designed to make
classification decision. The self-attention layer and output layer
form a neural classifier for phrase break prediction.

1) Recurrent Sublayer: A recurrent sublayer is introduced to
strengthen the sequential modeling. We implement the recurrent
sublayer with a BiLSTM. Given a sequence of input embedding
vectorsx = {x1, x2, ..., xT } for a sentence, two LSTMs process
the inputs in opposite directions [67]. We then use the last hidden
states (−→st and←−st ) from each of the LSTM components, combine
them via the sum operation. The resulting hidden state, st forms
a sequence, s = {s1, s2, ..., sT }, to represent the input sentence.

←−st = LSTM(xt,
←−−st+1) (5)

−→st = LSTM(xt,
−−→st−1) (6)

st =
−→st +←−st (7)

We provide the details of the forward LSTM next,

it = σ(Wxixt +Wsist−1 +Wcict−1 + bi) (8)

ct = (1− it)� ct−1 + it � tanh(Wxcxt +Wscst−1 + bc)
(9)

ot = σ(Wxoxt +Wsost−1 +Wcoct + bo) (10)
−→st = ot � tanh(ct) (11)

where � indicates element-wise product and σ indicates
element-wise sigmoid function. xt is the input vector and st is
the hidden unit vector. Wxi,Wxc,Wxo are the different weight
matrices for inputxt;Wsi,Wsc,Wso denote the different weight
matrices for hidden state ht , Wci,Wco are the different weight
matrices for cell state ct, and bi, bc, bo denote the bias vectors.

2) Self-Attention Sublayer: The key component of the self-
attention sublayer is the multihead self-attention [55], which
consists of h attention heads, each of which learns a distinct
attention function from different representation subspaces to
attend at different positions in the sequence. Specifically, given
a hidden state sequence s, that is generated from the recurrent
sublayer for an input sentence of T words, the multihead atten-
tion mechanism first maps s ∈ Rt×d to h different query, key
and value matrices via linear projection. Formally, for the ith

head, we denote the queries, keys and values by Q ∈ Rt×d/h,
K ∈ Rt×d/h and V ∈ Rt×d/h respectively. Then, scaled dot-
product attention [55] is used to compute the context vectors:

Mi = Attention(QWQ
i ,KWK

i , V WV
i )

= softmax(
(QWQ

i )(KWK
i )�√

d
)VWV

i (12)

where WQ
i ,WK

i , and WV
i represent the learned linear maps

that correspond to Q,K, and V , respectively.
Finally, the outputy = {y1, y2, ...yT } is computed as follows:

y = MW (13)

M = Concat(M1, ...,Mh) (14)

where M ∈ Rt×d and W ∈ Rd×d. The Concat(·) function
means that all the vectors produced by multiple parallel heads
are concatenated to form a single vector.

3) Residual Connection & Layer Normalization: To facili-
tate the training, we employ a residual connection [68] around
each of the two sublayers in Fig. 1, and apply layer normalization
[69] after the residual connection to stabilize the activation of
the deep neural network [55].

C. Output Layer

The output layer makes final decision for phrase break predic-
tion. We study two implementations, namely, a softmax layer
and a CRF layer.

1) Softmax Layer: The softmax layer computes a normal-
ized probability distribution over all possible K phrase break
labels for each word:

p(lt = k|yt) = exp(wo
kyt)∑K

k̃=1 exp(w
o
k̃
yt)

(15)
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where p(lt = k|yt) is the probability of the tth word taking
a phrase break k, and wo

k is the kth row of output weight
matrix W o.

To optimize this model, we minimize the categorical cross
entropy, which is equivalent to minimizing the negative log-
probability of the correct labels. For a sentence of T words, we
have,

E = −
T∑

t=1

log(p(lt = kref |yt)) (16)

where kref is the reference label.
2) CRF Layer: For sequence labeling, it is effective to con-

sider the correlation between taggers and to jointly decode the
best output for a given token. Following [53], we can also use a
CRF as the output layer to condition each prediction on the pre-
viously predicted label, thereby allowing the network to look for
the optimal path among all possible sequences. During training,
we optimize the model by maximizing the CRF score c(l) for
the correct label sequence l = {l1, l2, ..., lT } of a sentence of T
words, while minimizing those for all other label sequences:

E = −c(l) + log
∑

l̃∈Λ
exp(c(̃l)) (17)

whereΛ represents all possible label sequences for the sentence.

III. ENHANCED TEXT ENCODER FOR WORD EMBEDDING

The basic self-attention model attends to words in all positions
in an input sentence, thus captures long-range dependency for
phrase break prediction. As the input sentence is encoded as a
sequence of word embeddings, the performance of phrase break
prediction depends on the appropriateness of word embeddings.
Out-of-vocabulary problem in Mongolian presents a challenge
to effective word embedding.

To address the problem, we propose to enhance word em-
beddings with morphologically and phonologically motivated
subword embeddings. We believe that subword embeddings
will complement whole word embeddings for agglutinative
languages, such as Mongolian. One of the ways is to encode
the input text by using lexical word, morpheme, syllable, and
phoneme as input tokens.

Let’s first discuss some characteristics of Mongolian language
in Section III-A to set the stage for our study. We will then
propose various text encoders designed for Mongolian in Sec-
tions III-B, III-C and III-D.

A. Mongolian Characteristics

Mongolian is the most widely spoken and best-known mem-
ber of the Mongolic language family, which is a group of
languages spoken in East-Central Asia [70]. Approximately 6
million people speak Mongolian around the world. Mongolian
is one of the five major minority languages in China and is
an official language of the Inner Mongolia Autonomous Re-
gion of China. Today, Mongolian is written in two different
scripts: the classical Mongolian script used in China, and Cyrillic
Mongolian used in Mongolia. In this work, we consider only

Fig. 2. The narrow non-breaking space (NNBS) suffixes within a Mongolian
sentence. NNBS suffix segmented from a word is highlighted in italic. There are
three pauses in the sentence, one of which is located at the NNBS suffix -yin.

the classical Mongolian script. An example of the classical
Mongolian script and its Latin romanization are shown in Fig. 2.
It is noted that classical Mongolian is written from top to bottom,
left to right.

As an agglutinative language, similar to Japanese, Korean,
and Turkish, Mongolian has a complex morphological structure.
Most Mongolian words can be decomposed into root, deriva-
tional suffixes and inflectional suffixes [71]–[73]. The first two
components together are called a word stem, which holds the
major information contained in a word, and inflectional suffixes
serve to discriminate words based on lexical meaning. For nouns,
inflectional suffixes contain case suffixes, reflexive suffixes and
plural suffixes. These three types of suffixes are attached to the
stem through a narrow nonbreaking space (NNBS) (U+202F,
Latin: “-”), therefore, we call such suffixes NNBS suffixes.
The use of NNBS suffix is pervasive. For example, there are
3 NNBS suffixes in a sentence of only 8 words as illustrated
in Fig. 2.

Many suffixes can be added to a word stem to generate new
words. Suffixes often serve as a positive signal that implies the
POS of a word. For example, in , , ,
and , the words share the same word stem “ ” (Latin
romanization: “sandali”; English: “chair”). As a result, Mongo-
lian has a large vocabulary of more than one million words, with
only approximately thirty thousand unique stems [71]. The enor-
mous vocabulary size leads to data sparsity in any word-based
language modeling tasks. On the other hand, Mongolian is a
low resource language which has less annotated text and speech
data for word embedding training. We are interested in word
embedding techniques that take good advantage of existing data
resources for effective phrase break prediction.

In spoken Mongolian, syllables and phonemes are the basic
unit of speech phonetically, while morphemes and characters are
the basic unit in written form [74]. A Mongolian word consists
of a sequence of syllables, each having several phonemes; a
Mongolian word is written as a sequence of morphemes, each
consisting of multiple characters. For instance, the Mongolian
word “qihirag-tv” (English: “health”), “qihiju” (English: “put
inside”), and “qihitai” (English: “wild donkey”) are constructed
with the same syllables “qi” and “hi”. There is a general belief
that Mongolian word, morpheme, syllable, and phoneme all
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Fig. 3. Lexical analysis of a Mongolian sentence, where word, morpheme,
syllable, phoneme, and character represent different level of basic unit. In this
paper, word, morpheme, syllable, phoneme embeddings are used for phrase
break prediction.

contribute to semantic-syntactic grouping of words in a sentence,
therefore, prosodic phrasing. In Fig. 3, we use an exemplar to
illustrate the decomposition of basic units and their relationship.
We would like to study the use of the basic units as embedding
tokens, as shown in Fig. 4, to enhance the word embeddings for
phrase break prediction.

B. Morphologically Enhanced Text Encoder

Fig. 4(a) is the overall architecture of the morphologically
enhanced text encoder. The input features for each word include
two distinct units, word and morpheme. For each word, we first
obtain the morpheme sequence using a rule-based morphologi-
cal analyzer. Then, we use the BiLSTM embedding network to
obtain the morphological embedding μ for each word. Finally,
an attention layer is used to weight between word embedding
ω and morphological embedding μ to form a joint embedding
χm, which is then taken by a self-attention layer to decode the
phrase break label.

First, the morpheme sequence, represented as a sequence of
one-hot vectors, is processed by a BiLSTM using Equations
5 and 6. We then take the last hidden states from each of the
LSTM components, concatenate them together, and pass the
result through a separate nonlinear layer.

s = [←−s ;−→s ] (18)

μ = tanh(Wms) (19)

where Wm is a weight matrix mapping the concatenated hidden
states s from both LSTMs into a morphological embedding
representation, denoted as μ.

We now have two feature representations for each word: ω
is the word embedding as described in Section II-A, and μ
is an intermediate representation dynamically built from the
basic units in the tth word of the input sentence. Following
the idea in [75], instead of simply concatenating ω with μ, we
concatenate the two embeddings via an attention layer:

w = σ(M (3)
z tanh(M (1)

z · ω +M (2)
z · μ)) (20)

χm = Concat(w · ω, (1− w) · μ) (21)

where M
(1)
z , M (2)

z and M
(3)
z are the weight matrices for calcu-

lating w. σ(·) is the logistic function with values in the range [0,
1]. Vector w is of the same dimension as ω and μ and acts as the
weight between the two vectors.

Finally, the enhanced word embeddingsχm of morphological
enhanced text encoder is combined with the position embedding
π in the same way as Equation 4 to form a position-aware word
embedding x, which serves as the input to the following self-
attention layer as shown in Fig. 1.

C. Phonologically Enhanced Text Encoder

Fig. 4(b) is the overall architecture of the phonologically
enhanced text encoder. The input features for each word include
three distinct units, word and syllable and phoneme. We first
transform Mongolian words into their phoneme and syllable
sequence. Specifically, a phoneme sequence is generated by a
rule-based Mongolian grapheme-to-phoneme conversion mod-
ule. The syllable sequence is automatically obtained according to
the Mongolian syllable construction rule. They are then mapped
to a sequence of one-hot vectors, that are further processed by
the BiLSTM network described in Section III-B using Equations
5 and 6.

Similar to that in morphologically enhanced text encoder, we
concatenate the two last hidden vectors from two directions and
pass the result through a separate nonlinear layer to generate the
high-level phoneme embedding, denoted as χphn, and syllable
embedding denoted as χsyl using Equations 18 and 19.

We then concatenate χphn and χsyl to obtain a word-level
phonological embedding, denoted as χps. We now have two
feature representations for each word: ω is the word embedding
as described in Section II-A, and χps is its phonological embed-
ding. These two embedding vectors are fused by an attention
layer as described in Section III-B to produce an enhanced word
embedding χp,

w′ = σ(M (3)
z tanh(M (1)

z · ω +M (2)
z · χps)) (22)

χp = Concat(w′ · ω, (1− w′) · χps) (23)

All parameters involved in the above formula are configured
in the same way as in Section III-B. Finally, the enhanced
word embeddings χp is combined with the position embedding
π in the same way as Equation 4 to form a position-aware
word embedding x, that serves as the input to the following
self-attention layer as shown in Fig. 1.

D. Morphologically-Phonologically Enhanced Text Encoder

By combining both morphologically enhanced and phono-
logically enhanced text encoders, we study the effect of the
combined system in Fig. 4(c).

The input features for each word now consist of three distinct
components: the word embedding ω and two pieces of comple-
mentary information, i.e., its morphological embedding μ and
phonological embedding χps. We first obtain the word, mor-
phological, and phonological embeddings in the same way as
discussed in Sections III-B and III-C. We then fuse the the three
embeddings via an attention layer to obtain the morphologically
and phonologically enhanced word embedding χmp.

w′′2 = 1− σ(M (3)
z1

tanh(M (1)
z1
· ω +M (2)

z1
· χps)) (24)

w′′3 = 1− σ(M (3)
z2

tanh(M (1)
z2
· ω +M (2)

z2
· μ)) (25)
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Fig. 4. The network architecture of enhanced text encoders. The left panel (a) is the morphologically enhanced text encoder. The middle panel (b) is the
phonologically enhanced text encoder. The right panel (c) is the morphologically-phonologically enhanced text encoder.

w′′1 = 1− w′′2 + w′′3 (26)

χmp = Concat(w′′1 · ω,w′′2 · χps, w
′′
3 · μ) (27)

where M
(1)
z1 , M (2)

z1 , M (3)
z1 and M

(1)
z2 , M (2)

z2 , M (3)
z2 are weight

matrices for calculating w′′1, w′′2 and w′′3, and σ(·) is the logistic
function with values in the range of [0, 1]. Finally, the enhanced
word embeddingsχmp is combined with the position embedding
π in the same way as Equation 4 to form a position-aware
word embedding x, that serves as the input to the following
self-attention layer as shown in Fig. 1.

To summarize, we have formulated three text encoders that
learn morpheme, syllable, and phoneme embeddings to enhance
word embeddings with morphological and phonological fea-
tures. We denote the proposed text encoders as M_Enc, P_Enc
and MP_Enc. Next we evaluate their performance for phrase
break prediction in Mongolian TTS.

IV. EXPERIMENTS

We now evaluate the effectiveness of the proposed enhanced
word embedding techniques in phrase break prediction, and their
contributions to a DNN-based Mongolian TTS system [76].

A. Experimental Corpora

Mongolian speech data: We conducted experiments on a
well-formulated Mongolian TTS database, that has rich phonetic
and prosodic content [62], [76]. The database contains Mon-
golian daily expressions recorded by a female native speaker.
Speech signal is recorded at 16 kHz sampling rate.

Prosodic prediction data: We use the text transcript of
the Mongolian speech data as the training data of the phrase
break prediction model. The transcript contains 59k sentences
and more than 409k words, 1,065k syllables, 500k morphemes
and 1,885k phonemes. The prosodic phrase breaks of all the
sentences were manually labeled by five native annotators who
examined the text and listened to the speech. Each word is
assigned to a phrase break label: “B” (break after a word) or
“NB” (otherwise). The total number of prosodic phrase break
labels is approximately 131k, and the average length of prosodic
phrases is 3.5 words. To the best of our knowledge, this is the
first database with prosodic phrase labels in Mongolian, and we
will make this database publicly available in the near future. We
divide the database into a training and test set in a ratio of 4 to 1,

and we extract 25% from the training set as a development set
to optimize model parameters.

Mongolian text data: We pre-trained a skip-gram word
embedding network on text data from mainstream Mongolian
websites. After cleaning up, we obtained a text corpus of approx-
imately 200 million words with a vocabulary size of 3 million.
For phrase break prediction network training, all Mongolian
words were Latin-cased before passing through the lookup table
to retrieve their word embeddings.

B. Experimental Setup

To verify the effectiveness of our proposed text encoders,
namely M_Enc, P_Enc and MP_Enc, we choose a prosodic
prediction model with pre-trained word embeddings, denoted
as W_Enc, as the baseline. We conducted three experiments to
evaluate different phrase break prediction classifiers in combi-
nation with three proposed text encoders. The first experiment
is designed to test a CRF classifier; the second experiment is
designed to test a BiLSTM classifier; the third experiment is
designed to test the proposed self-attention neural classifier. The
default output layer is a softmax layer. In all the experiments,
we use TensorFlow [77] to build the models.

1) Experiment 1 (CRF): We compare word embeddings gen-
erated by W_Enc, M_Enc, P_Enc and MP_Enc as the input
to a CRF classifier, which predicts phrase break labels. The
CRF classifier is a linear-chain CRF implemented with CRF++
toolkit.1 It is a non-neural classifier solution. Bigram windows
(previous two words, current words, and future two words) are
used to learn the context information.

2) Experiment 2 (BiLSTM): We futher compare word em-
beddings generated by W_Enc, M_Enc, P_Enc and MP_Enc as
the input to a BiLSTM classifier. The BiLSTM classifier has
two hidden layers, each containing 160 memory blocks in each
direction. The dropout method [78] is employed to regularize
our model, and the dropout rate is set to 0.5.

3) Experiment 3 (Self-Attention): We finally compare word
embeddings generated by W_Enc, M_Enc, P_Enc and MP_Enc
as the input to the self-attention neural classifier illustrated in
Section II, when predicting phrase breaks. The self-attention
layer consists of 5 hidden layers withh = 8 heads. We also apply
dropout to prevent the networks from overfitting. The dropout

1https://taku910.github.io/crfpp/

https://taku910.github.io/crfpp/
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layers are added before the residual connections with a keep
probability of 0.8.

For the text encoders, the size of LSTM-related layers is
set to 200 in both directions. For M_Enc, the morphological
embedding μ is of the same dimension as that of word embed-
dingω. Likewise, the phonological embeddingχps is of the same
dimension as that of ω in P_Enc. For MP_Enc, the sum of μ and
χps dimension equals to that of ω. Specifically, the dimension of
ω is set to 100. All tokens are initialized with 100-dimensional
pre-trained vectors, as illustrated in Section II-A and updated
during training. Both μ and χps are randomly initialized with a
uniform distribution in the interval [−0:05; 0:05].

We set the learning rate to 1.0 and the batch size to 64. All
parameters are optimized using the AdaDelta [79] algorithm. In
every epoch, we calculate the performance on the training set:
we stop training if the effectiveness does not increase for seven
epochs. The above parameter choices are based on the model
performance on the development data, which consists of 25% of
the training data. Finally, the best model on the training stage is
then evaluated on the test set.

For data preprocessing, all digits are replaced with the charac-
ter “0” as digits don’t carry semantic meaning [80]. Any words
that occur only once in the training data are replaced by the
generic OOV token for word embeddings but are still used in the
phonological and morphological embedding components. For
syllable liaison phenomenon, we restore the liaison words into
two independent words, and then get their syllable sequences
separately. According to statistics, the liaison phenomenon only
occurs at about 3k words, and 90% of them at the end of
sentences. For the 409k words of all data, 3k words only account
for a small proportion, which we believe that it don’t have a
serious impact on the experiment results.

As the text in the databases has already been annotated with
phrase break labels, the ground truth is available to compute the
performance of our approaches. We report the performance of
our approaches in terms of the precision, recall and F1 score,
which is defined as the harmonic mean of precision and recall.
The F1 score ranges from 0.0 to 100.0, with a higher value
indicating better performance.

C. Objective Evaluation

We report three experiments for the proposed text encoders in
combination with three different classifiers, i.e. CRF, BiLSTM
and self-attention in Table I. It is observed that all enhanced
text encoders consistently outperform W_Enc baseline across
all CRF, BiLSTM and self-attention model.

In Expt 1, 85.55% of F1 is reported for the baseline system
(W_Enc) with word embeddings only. We improve F1 to 86.10%
with M_Enc, 86.93% with P_Enc, and 87.45% with MP_Enc. It
is noted that word embedding alone (W_Enc) performs poorly
due to inadequate training of word embedding for a large vo-
cabulary on a small dataset. By incorporating phonological or
morphological embeddings to enhance word embeddings, we
achieve clear performance gain. MP_Enc combines phonolog-
ical and morphological embeddings to achieve the best perfor-
mance for Mongolian phrase break prediction.

TABLE I
SYSTEM PERFORMANCE (%) OF MONGOLIAN PHRASE BREAK PREDICTION

WITH DIFFERENT TEXT ENCODERS. THE OPTIMAL MODEL IS SIGNIFICANTLY

BETTER THAN ALL THE COMPARISON SYSTEMS WITH P-VALUE < 0.01

TABLE II
SYSTEM PERFORMANCE (%) OF MONGOLIAN PHRASE BREAK PREDICTION

WITHOUT AN ATTENTION LAYER INSIDE TEXT ENCODERS. THE CLASSIFIER

FOLLOWS THE CONFIGURATION IN EXPT 3

In Expt 2, we observe a similar trend as in experiment 1.
It is worth noting that all results in experiment 2 consistently
outperform their counterparts in experiment 1, confirming the
effectiveness of contextual modeling of LSTM for phrase break
prediction. The results further confirm that morphological and
phonological information contributes substantially to perfor-
mance gain.

In Expt 3, we observe a similar trend as in experiments 1 and 2.
We are encouraged by the fact that self-attention neural classifier
consistently outperforms both CRF and BiLSTM models. The
F1 score of with MP_Enc is reported at 93.27% which is the
highest in all experiments. The results confirm our intuition that
structural information over long range in a sentence contributes
to phrase break prediction, and self-attention layer effectively
models such long range dependency.

All experiments confirm the effectiveness of morphological
and phonological information in phrase break prediction. The
performance is further improved by appropriate contextual mod-
els such as BiLSTM and self-attention. To better understand the
role of the internal components in Expt 3, we conduct ablation
tests in Section IV-D.

D. Ablation Tests

In this section, we analyze the main factors that affect the
phrase break prediction performance in experiment 3.

1) Attention Layers inside Text Encoders: As discussed in
Section III, an attention layer is adopted in the text encoder
to dynamically weight various inputs, i.e. word, morpheme,
syllable, and phoneme. Table II reports results from ablation
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TABLE III
ABLATION TEST OF SYSTEM PERFORMANCE (%) FOR MONGOLIAN PHRASE

BREAK PREDICTION. THE CLASSIFIER FOLLOWS THE CONFIGURATION IN

EXPT 3 WITH MP_ENC. THE BEST RESULT OUTPERFORMS OTHERS WITH A

P-VALUE < 0.01

TABLE IV
SYSTEM PERFORMANCE (%) FOR MONGOLIAN PHRASE BREAK PREDICTION

WITH DIFFERENT OUTPUT LAYERS. THE CLASSIFIER FOLLOWS THE

CONFIGURATION IN EXPT 3 WITH MP_ENC

tests without an attention layer inside the text encoders. “Without
attention layer” means that the multiple input embeddings are
simply concatenated without attention weights.

We note that the performance in Table II is consistently lower
than that in the last three rows of Table I, which highlights the
importance of the attention layer for fusion of information, as
lexical word, morphological unit, and phonological unit each
has differentiated contributions to phrase break prediction.

2) Configuration of Recurrent Sublayer: In this experiment,
we would like to study the effect of the depth of recurrent sub-
layer on the performance for phrase break prediction. Although
the self-attention model has strong sequential modeling ability,
it still requires nonlinear sublayers to enhance its expressive
power. To demonstrate our idea, we conduct ablation experi-
ments. Table III reports the test results.

It is noted that the performance increases as more layers
are added, that saturates at 6 layers. We consider 5 layers are
sufficient for prosodic phrase break modeling. The penultimate
row shows the results of a 5-layer model without a recurrent
sublayer, which has a lower performance than that of a 2-layer
model with recurrent sublayer. The result suggests that the
recurrent sublayers are essential components in the classifier.

The last row shows the results of the 5 layer-model without
positional encoding. The significant decline in F1 score indicates
that positional encodings are indispensable for our model: armed
with the positional encoding, the model benefit from long range
contextual information.

3) Choice of Output Layer: In this experiment, we study the
effect of different output layers on the phrase break prediction
performance. We compare CRF [53], which conditions each
prediction on the previously predicted label, and a softmax layer.
Table IV summarizes the experimental results for the best system
(MP_Enc with self-attention classifier) in Expt 3, but with two
different output layers, softmax or CRF.

Fig. 5. Effect of varying the word embedding ω dimension on F1 Score (%)
of the W_Enc system. All p-values are lower than 0.01.

Surprisingly, the softmax layer outperforms the CRF layer
across all metrics. This result is in contrary to other prior empir-
ical finding where the CRF output layer is likely to work better
than the softmax output layer on other sequential labeling tasks,
e.g., POS tagging [81] and name entity recognition (NER) [82].
We believe that this could be a result of two factors. First, the
nature of the specific tasks. For NER, which gives each word an
entity label e.g., time, location, organization, person and money,
the distribution of different labels in a corpus reflect certain syn-
tactic rules. Therefore, contextual entity labeling matters more
when decoding the current label. By contrast, there are fewer
phrase breaks, i.e. NB and B, than NER labels. Furthermore,
the distribution of phrase break labels is highly unbalanced. The
ratio between NB and B is roughly 85% to 15%. As a result,
the phrase break labeling sequence may not be as informative
as that in NER. Second, the nature of the specific model. Unlike
traditional RNN-based sequence labeling models [66], [81],
[82] that capture sequential context, self-attention sublayer in
Fig. 1 connects two arbitrary words directly regardless of their
distance [56], [61]. Furthermore, the recurrent sublayer in Fig. 1
well captures the long-range sequential dependency, therefore,
the self-attention layer in Fig. 1 doesn’t rely on an output layer to
model the phrase break labeling sequence for decision making.

E. Analysis

To validate the usefulness of morphological and phonological
cues, we would like look into how the proposed text encoders
improve performance in out-of-vocabulary situations.

1) Morphological and Phonological Cues: We would like
to examine if morphological and phonological cues are indeed
informative. The morphological and phonological embeddings
in the text encoders have a larger number of parameters than the
word embedding baseline due to an increase of input dimension
if all other hyperparameters are held constant. Such increase of
model parameters may cause a fluctuation in performance.

To confirm that this effect does not have a material impact on
the results, we ran an additional experiment to study the effect of
varying the word embedding dimension on the performance of
the word embedding baseline W_Enc. Specifically, we varied the
dimension of word embeddingω from 50 to 200 and evaluate the
performance, in terms of F1 Score. Fig. 5 shows the performance
of phrase break prediction as a function of the dimension of word
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TABLE V
SYSTEM PERFORMANCE (%) FOR MONGOLIAN PHRASE BREAK PREDICTION ON

TWO OPEN TEST SETS. IV SET DOES NOT CONTAIN ANY

OUT-OF-VOCABULARY WORDS, WZHILE OOV SET ONLY CONSISTS OF

OUT-OF-VOCABULARY WORDS. THE PROPOSED MODELS SIGNIFICANTLY

OUTPERFORM THE BASELINE WITH P-VALUE < 0.01

embedding ω, which peaks at 100. A higher dimension does not
lead to better performance.

For a fair comparison, we compare the 200-dimension word
embedding in W_Enc with the three enhanced word embed-
dings, namelyχp,χm, andχmp obtained from the three systems
M_Enc, P_Enc and MP_Enc which have the same number of
parameters. We observe that the F1 score (90.07%) of W_Enc
system is lower than M_Enc, P_Enc and MP_Enc, by 2.49%,
2.31% and 3.30%, respectively. The results again confirm that
the morphological and phonological embeddings bring to the
model additional cues for phrase break prediction.

Overall, the results suggest that solely increasing the embed-
ding dimension does not lead to substantial improvements and
that the use of meaningful linguistic units for representation is
important.

2) Effect on Out-of-Vocabulary Words: As described in
Section I, the proposed method seeks to relieve the out-of-
vocabulary problem, i.e. if a word has never been seen before,
instead of being labelled as (UNK), its word embedding is
enhanced by phonological or morphological decompositions.
To validate the idea in phrase break prediction task, we report
the performance of W_Enc, M_Enc, P_Enc, and MP_Enc on
two open test sets which have a contrastive out-of-vocabulary
situations. A total of 600 sentences form the open test set: 300
sentences without out-of-vocabulary words, called “IV set”,
and another 300 sentences called “OOV set”, including only
out-of-vocabulary words.

As shown in Table V, the W_Enc system performs better on
“IV set” than “OOV set”. Additionally, although M_Enc and
P_Enc also perform better on “IV set” than “OOV set”, the gap
between the two F1 scores is smaller than that of W_Enc. It is en-
couraging to observe that the MP_Enc system performs almost
equally well on both test sets and significantly outperforms the
W_Enc baseline. Once again, we confirm that MP_Enc system
effectively attenuates the out-of-vocabulary problem in phrase
break prediction.

To analyze the behavior of various text encoders, we use
one example extracted from “OOV set” to compare their pre-
dicted phrase break labels in Table VI. The prediction errors are
highlighted in gray. W_Enc text encoder doesn’t provide suffi-
cient information for some morphologically or phonologically
rich words, such as “baigvlvmji-yin”, “ogereqilelte-yin”, and
“batvlagsan”. Therefore, the W_Enc model is unable to make

TABLE VI
AN EXAMPLE OF PREDICTED PHRASE BREAK LABELS PRODUCED BY VARIOUS

TEXT ENCODERS. THE LABELS NOT CORRECTLY PREDICTED FROM THE

SOURCE MONGOLIAN TEXT (LATIN ROMANIZATION) ARE HIGHLIGHTED IN

GRAY. (“*” DENOTES WORD BOUNDARY.)

informed decisions. We further observe that M_Enc and P_Enc
both improve phrase break prediction for the sentence. For ex-
ample, the words “baigvlvmji-yin” and “ogereqilelte-yin” were
correctly predicted by virtue of their abundant internal word
information. Finally, MP_Enc leverages both morphological and
phonological information to eliminate all prediction errors.

F. Subjective Evaluation

We conducted listening tests to further evaluate the contribu-
tions of phrase break prediction to speech synthesis quality. We
compare four DNN-based Mongolian TTS systems [76], which
differ only in terms of prosodic break inputs.

1) A/B Preference Test: We conducted an A/B preference
test to compare the naturalness of synthesized speech. A set
of 100 sentences were randomly selected from the test set for
this listening test. We predicted their phrase break labels using
W_Enc, M_Enc, P_Enc, and MP_Enc model with self-attention
classifier. A group of 10 subjects were invited to perform the
listening test. The preference percentages are reported in Fig. 6.
The MP_Enc results are the most preferred ones across all three
pairwise preference tests.
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Fig. 6. The results of three pairwise A/B preference tests with a confidence
level of 95%. The p-values are 0.00184, 0.00203 and 0.00126 respectively.

Fig. 7. MOS scores of speech quality with the 95% confidence intervals
for four comparative systems with W_Enc, M_Enc, P_Enc, and MP_Enc text
encoders.

2) Mean Opinion Score Test: We further conducted a 5-point
mean opinion score (MOS) test (“5” for excellent, “4” for good,
“3” for fair, “2” for poor, and “1” for bad). A set of 100 sentences
were randomly selected from the test set for MOS test. Fig. 7
compares the results. It is observed that M_Enc, P_Enc and
MP_Enc systems outperform the W_Enc baseline, that shows
the clear advantage of phonological and morphological features.
As the four systems only differ in terms of phrase break predic-
tions, the results suggest that better phrase break prediction leads
to higher voice quality. Among the four systems, MP_Enc shows
the best performance, with an MOS of 4.03.

V. DISCUSSION AND CONCLUSION

In this article, we investigate the use of morphological and
phonological features for phrase break prediction in a Mongolian
TTS system. We explore the way to encode input text in terms

of word, morpheme, syllable, and phoneme through various
text encoders. We show that a self-attention classifier effec-
tively captures long range contextual information that improves
phrase break prediction. The proposed phrase break prediction is
particularly effective for agglutinative languages, as evidenced
in the experiment where a large number of out-of-vocabulary
Mongolian words are involved. The proposed framework does
not require additional feature engineering specific to the task or
language, nor additional training data. While data-driven repre-
sents the mainstream TTS solution, we believe that linguistically
motivated features remain useful especially for low-resource
languages.
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