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Abstract
In the speech synthesis systems, the phrase break (PB)

prediction is the first and most important step. Recently, the
state-of-the-art PB prediction systems mainly rely on word
embeddings. However this method is not fully applicable to
Mongolian language, because its word embeddings are inade-
quate trained, owing to the lack of resources. In this paper, we
introduce a bidirectional Long Short Term Memory (BiLSTM)
model which combined word embeddings with syllable and
morphological embedding representations to provide richer
and multi-view information which leverages the agglutinative
property. Experimental results show the proposed method
outperforms compared systems which only used the word
embeddings. In addition, further analysis shows that it is quite
robust to the Out-of-Vocabulary (OOV) problem owe to the
refined word embedding. The proposed method achieves the
state-of-the-art performance in the Mongolian PB prediction.
Index Terms: Mongolian, Syllable, Morphological, Phrase
Break Prediction, BiLSTM

1. Introduction
Phrase break (PB) prediction is a crucial step in speech syn-
thesis [1, 2]. It breaks long utterances into meaningful units of
information and makes the speech more understandable. More
importantly, in the context of speech synthesis, phrase breaks
are often the first step for other models of prosody, such as
intonation prediction and duration modeling [3, 4, 5]. Any
errors made in the initial phrasing step are propagated to other
downstream prosody models. Ultimately resulting in synthetic
speech that is unnatural and difficult to understand.

Traditional PB prediction methods use machine learning
models like Hidden Markov Models (HMMs) [6] or Conditional
Random Fields (CRFs) [7, 8] which trained with large sets
of labeled training data. Work in this area has traditional-
ly involved linguistic features - for example, part-of-speech
(POS), length of word etc [9, 10]. However, the linguistic
features are discrete linguistic representations of words, which
don’t take into account the distributional behavior of words.
Recent developments in neural architecture and representation
learning have opened the door to models that can discover
useful features automatically from the unlabelled data. With
this development, word embedding [11] was proposed to learn
distributed representation of word, which encodes a word as
a real-valued low-dimensional vector. There are many works
applying the word embedding techniques to Natural Language
Processing (NLP) tasks, such as question answering, machine
translation and so on [12, 13, 14]. Related ideas have been
successfully applied to statistics parameter based and unit

selection based speech synthesis system [15, 16]. Furthermore,
for PB prediction task, some systems which do not rely on the
linguistic feature are developed [17, 18, 19, 20, 21]. In [19],
the authors obtain continuous-valued word embedding features
that summarize the distributional characteristics of word types
as surrogates of POS features. In [20], researchers utilize deep
neural networks (DNNs) and recurrent neural networks (RNNs)
to model PB by using word embeddings. Some further work
can be found in [22] and [23]. In [22], authors obtain useful
character embedding features to prediction PB in Chinese.
In [23], a character-enhanced word embedding model and a
multi-prototype character embedding model are proposed for
Mandarin PB prediction.

All the methods mentioned has made great contributions,
while they are not directly applicable to highly agglutina-
tive languages such as Mongolian, Korean and Japanese for
two reasons. First, sufficient training corpus is necessary
for these methods to achieve such great performance, while
the Mongolian training corpus is not very abundant; Second,
such embeddings learned from these methods is unaware of
the morphology of words. Mongolian is agglutinative in
its morphology, words mainly contain different morphemes
to determine the meaning of the word [24, 25, 26] hence
increasing the vocabulary size for word embedding training and
bring a considerably great challenge to train entire word-level
distributed representation. Specifically, many suffixes can be
in addition to word-stem to generate many new words. Its
suffixes often serve as a positive signal which implies the POS
of the word. It’s like that the word implied by the suffix ‘-
ly’ is an adverb in English. For example: ������� !"# , ������� $% ,
������� !� , ������� &'( , ������� )* . These words share the same word-
stem “������� ” (Latin: “sandali”, means: “chair”). In addition,
a sequence of syllables forms a Mongolian word, and the
composition of 2 or 3 characters forms a syllable. A single
syllable possess a semantic meaning similar to morpheme. For
instance, representation of “qihirag-tv”, “qihiju”, “qihitai” are
constructed by the same syllables “qi” and “hi”.

However, the Mongolian PB prediction research is at its
initial stage compared with Chinese and English [27]. There
are many works on Mongolian Text-to-Speech (TTS) which
have made great contributions [28, 29], but the naturalness of
synthetic speech is less than satisfactory especially without a
good rhythm.

In this work, we leverage morphologic and syllable features
to model Mongolian PB. We first use Bidirectional Long Short
Term Memory (BiLSTM) networks to encode syllable and mor-
phologic level information to capture the semantics of the word.
Then we combine syllable, morphologic level representation
and word level representation to an improved representation and
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Figure 1: Mongolian PB prediction system. The Word-
, Syllable- and Morpheme-level embeddings (Figure 3) are
concatenated as input; a BiLSTM produces context-dependent
representations; the information is passed through a hidden
layer and the output layer. The outputs are either probability
distributions for softmax. (WE: word embedding; SE: Syllable
embedding; ME: Morphological embedding)

feed it in another BiLSTM to model context information of each
Mongolian word and decode the corresponding right PB label.

Our experiments show the proposed approach achieves best
performance. The syllable and morphologic level represen-
tation provides richer semantic information for word repre-
sentation and play an important role to the neural network
architecture. Moreover, this model is quite robust to the Out-
of-Vocabulary (OOV) problem.

2. Proposed Model
Figure 1 shows the overall architecture of the Mongolian PB
prediction model. The set of input features for each token
is basically formed by three distinct components: the word
embedding (WE) and two complementary information: syllable
(SE) and morphological embeddings (ME). For each given
token, we first obtain the word, syllable and morphological
embeddings, then we concatenate these three embeddings to get
a refined embedding and then fed it into a BiLSTM [30, 31] to
decode the corresponding right PB label. We formulate each
component of the model in the following subsections.

2.1. Input Features

2.1.1. Word Embedding

Word embedding are obtained from an unsupervised learning
model that learns co-occurrence statistics of words from a
Mongolian embedding corpus (Section 3.1), yielding word
embeddings as distributional semantics [11]. Specifically,
we use Skip-Gram model [11] to train the word embedding
representation.

2.1.2. Syllable & Morphological Embedding

In the case of Mongolian, syllable and morpheme is a basic
unit of sequence with short length compared to character
level. Figure 2 highlights the difference between various
embedding and the feature they capture. Syllable is the basic
and smallest unit of speech. In Mongolian, words are made up
of several syllables according to certain pronunciation rules. We
transform each Mongolian word (Latin: ‘qihirag-tv’, means:
health) into a sequence of syllables (‘qi’, ‘hi’, ‘rag’, ‘-tv’)
and then use the BiLSTM embedding method to create a
syllabel-level feature representation for the word. On the
other hand, morphologically, unlike many other languages, a

word

syllable

morpheme

character

homun-u ^ bey_e-yin ^ eregul ^ qihirag-tv ^ tvsalan_a

ho/mun/-u ^ be/y_e/-yin ^ e/re/gul ^ qi/hi/rag/-tv ^ tv/sa/la/n_a

homun / -u ^ bey_e / -yin ^ eregul ^ qihirag / -tv ^ tvsalan_a

h/o/m/u/n/-u ^ b/e/y/_e/-y/i/n ^ e/r/e/g/u/l ^ q/i/h/i/r/a/g/-t/v ^ t/v/s/a/l/a/n/_a

“homun-u  bey_e-yin  eregul  qihirag-tv  tvsalan_a”

Figure 2: Comparison of various embedding levels. In case of
Mongolian, syllable and morpheme is a basic unit of sequence
with short length compared to character level, which is effective
to make the size of vocabulary smaller.
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Figure 3: Syllable or morpheme units are given as input (take
three units for example); a BiLSTM produces context-dependent
representations; the information is passed through a hidden
layer. The proposed Syllable or Morphological embedding are
generated.

Mongolian word (Latin: ‘qihirag-tv’) is not just a concatenation
of characters. It is constructed by the special agglutinative
property. Mongolian words can be decomposed into a set of
morphemes: one root and several suffixes (‘qihirag’, ‘-tv’). We
use the BiLSTM embedding method, as same as the syllable
embedding part, to get morphological embedding for words.
The syllable and morphological embedding is used along with
a word embedding to provide richer features for the word and
attenuates the out-of-vocabulary (OOV) problem.

Figure 3 illustrate the BiLSTM embedding network ar-
chitecture in detail. Each words in a Mongolian sentences
is broken down into individual smaller unit: syllable and
morpheme, these are then mapped to a sequence of embeddings
(emb1,...,embt), which are passed through a BiLSTM:

→
h∗i = LSTM(embi,

→
h∗i−1) (1)

←
h∗i = LSTM(embi,

←
h∗i−1) (2)

We then use the last hidden vectors from each of the LSTM
components, concatenate them together, and pass the result
through a separate non-linear layer.

h∗ = [
→
h∗R;

←
h∗l ] SE(ME) = tanh(Wmh∗) (3)

where Wm is a weight matrix mapping the concatenated hidden
vectors from both LSTMs into a joint representation SE or ME,
built from individual unit: syllables or morphemes .

We now have three alternative feature representation for
each word - WEt is an embedding learned on the word level as
described in Section 2.1.1 , and SEt or MEt is a representation
dynamically built from individual unit in the t-th word of
the input Mongolian text. We concatenate the three vectors
into a joint vector (WE∗) and use it as the new word-level
representation for the PB prediction model:

WE∗ = [WE;SE;ME] (4)
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2.2. BiLSTM Model

The joint embeddings (WE∗) which concatenate word, syllable
and morphological embeddings are given as input to two LSTM
components moving in opposite directions through the text, cre-
ating context-specific representations. The respective forward-
and backward-conditioned representations are concatenated for
each word position, resulting in representations that are condi-
tioned on the whole sequence:

→
ht = LSTM(WEt,

→
ht−1) (5)

←
ht = LSTM(WEt,

←
ht−1) (6)

ht = [
→
ht;
←
ht] (7)

We include an extra narrow hidden layer on top of the
LSTM, which allows the model to detect higher-level feature
combinations, while constraining it to be small forces it to focus
on more generalisable patterns:

dt = tanh(Wdht) (8)

where Wd is a weight matrix between the layers, and the size of
dt is intentionally kept small.

Finally, to produce PB label predictions, we use a softmax
layer. The softmax calculates a normalised probability distribu-
tion over all the possible labels of each word:

P (yt = k|dt) = eWo,kdt

∑
k̃εK e

W
o,k̃

dt
(9)

where P (yt = k|dt) is the probability of the label of the t-
th word (yt) being k, K is the set of all possible labels, and
Wo,k is the k-th row of output weight matrix Wo. To optimise
this model, we minimise categorical crossentropy, which is
equivalent to minimising the negative log-probability of the
correct labels:

E = −
t=1∑

T

log(P (yt|dt)) (10)

This approach assumes that the word-level, syllable-level
and morpheme-level components learn somewhat disjoint in-
formation, and it is beneficial to give word embedding only as
input to the Mongolian PB prediction system. It allows the
model to take advantages of multi-view information from the
syllable and morphological features in Mongolian.

3. Experiments and Results
3.1. Datasets

To verify the effectiveness of the proposed approach, we rely on
a Mongolian TTS corpus which contains 59k sentences, more
than 409k words, 1065k syllables and 500k morphemes. Each
word in corpus was assigned to a PB label: “B” (means “break
after a word”) or “NB” (means “non-break”). We divided the
corpus into training and test set in a ratio of 4 to 1.

The word embedding train data were obtained from Mon-
golian mainstream websites. After deleting web page tags and
too long sentences, its token size and vocabulary are about 200
million and 3 million respectively.

3.2. Setup

In the experiments, all digits were replaced with the arabic
number “0”. Any words that appeared only once in the training
set were replaced by the common embedding representations of
OOV words. But in syllable and morphological parts, we leave
such words unchanged.

For the Mongolian datasets we used 300-dimensional pre-
trained vectors as described in Section 2.1.1 and updated during
training. We set both syllable and morpheme vector lengths to
150 and then do random initialization.

The LSTM layer size was set to 200 in both direction for all
experiments. The size of hidden layer d is 50, and the combined
representation SE+ME has the same length as the WE. We
set learning rate as 1.0 and batch size as 64. All parameters
were optimised using AdaDelta algorithm. The output layer’s
activation function is Softmax. At every epoch, we calculate the
performance on the training set. We stop training if the effect
does not increase seven epoches. The best model on training
stage was then used for evaluation on the test set.

As the text in the databases has already been annotated
with PB labels, a ground truth to compute the performance of
our approaches is available. We report the performance of our
approaches in terms of the Precision (P), Recall (R) and F-score
(F) which is defined as the harmonic mean of the P and R. F
values range from 0 to 1, with higher values indicating better
performances.

3.3. Results

With this experiment, we wish to determine which type of em-
bedding methods performs better. All Mongolian phrase break
prediction systems are built at different embedding methods in
our experiments.

• DNN (‘WE’ only): (vadapalli, 2016) only takes word
embeddings as input. DNN model utilized to model the
phrase break.

• LSTM (‘WE’ only): (vadapalli, 2016) only takes word
embeddings as input in LSTM phrase break model.

• BiLSTM (‘WE’ only): only word embeddings are fed in
BiLSTM model.

• BiLSTM + BiLSTM CE (WE + CE): takes as input both
word embeddings and character embeddings extracted
from a BiLSTM embedding method. BiLSTM model
takes concatenated vectors of word and character embed-
dings as input tokens.

• (proposed) BiLSTM + BiLSTM SE + BiLSTM ME
(WE + SE + ME): We concatenate the word, syllable
and morphological embeddings and use this as the new
word-level representation for the BiLSTM PB prediction
model.

Table 1 shows the performance of all above five systems.
As can be seen, our experiment reaches its peak performance
when we use proposed embeddings ‘WE + SE + ME’, which
proves the effectiveness of proposed joint embedding. We
found that incorporating the word- , syllable-, and morpheme-
level information into the model improved performance on this
task, indicating that capturing features regarding the above
multi-view information is indeed useful in the Mongolian PB
prediction system. ‘WE + SE + ME’ have shown competitive
results compared to ‘WE + CE’. A problem of ‘WE + CE’ is that
character themselves have no semantic meanings so that model
concentrate on only local syntactic features of words. while
in ‘WE + SE + ME’, we select syllable and morpheme which
have fine-granularity like a character but has its own meaning in
Mongolian as a basic component of the representation of words.

Compared the ‘WE + SE + ME’, ‘WE + CE’, ‘WE’
systems, ‘WE’ system obtains the worst performance, the
results indicate that adding extra information from Mongolian
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Table 1: System performance of Mongolian PB prediction with different Embedding methods.

Embedding methods Model P R F

WE DNN (vadapalli, 2016) 86.92 82.20 82.95
WE LSTM (vadapalli, 2016) 87.12 85.41 86.26
WE BiLSTM 88.73 90.24 88.58
WE + CE BiLSTM + BiLSTM CE 91.03 90.82 90.02
WE + SE + ME BiLSTM + BiLSTM SE + BiLSTM ME 90.65 91.49 90.20

word’s internal structure for word representation, to the original
word embeddings, allow the model to learn useful patterns from
sub-word units.

In addition, it can be seen that BiLSTM system achieve
significant performance than DNN or LSTM system when using
the word-level embeddings. While DNN are able to effectively
capture dependencies across features, they lack the ability to
capture long-term relations that are spread over time. On the
other hand, PB prediction can be treated as a sequential labeling
task that assigns boundary labels to words of an input sentence,
BiLSTM are able to capture long-term temporal relations and
thus are better for this task.

3.4. Analysis

This section provides an analysis to validate our chief claims
and to elucidate some interesting aspects of proposed embed-
ding representations for the Mongolian words.

Whether the proposed embeddings contains richer in-
formation?: Our proposed syllable and morphological em-
beddings increases the number of parameters in the BiLST-
M PB model due to the increase in the input dimension
if all other hyperparameters are held constant. To confirm
that this did not have a material impact on the results, we
ran an additional experiments. In the first, we trained a
‘WE(BiLSTM)’ system without the syllable and morphological
embeddings but increased the word embedding dimension so
that number of parameters was the same as in ‘WE+SE+ME’.
In this case, performance decreased (by 1.81% F) compared
to the ‘WE+SE+ME’ model, indicating that solely increasing
parameters does not improve performance. It also shows that
our proposed embeddings provides richer representations then
‘WE’.

How effective is the proposed method for alleviating
OOV problem?: As described in Section 2.1.2, the pro-
posed method can relieve the problem of out-of-vocabulary
(OOV) words - if a token has never been seen before, then
it’s embedding representation will be enriched by syllable or
morphological information instead of replaced by an unknown
(UNK) tag representation. To validate the effectiveness of
the proposed method in solving OOV problem, we report the
performance with two open test sets by using ‘WE+SE+ME’
and ‘WE(BiLSTM)’ systems respectively in Table 2. 100
sentences were designed to form the open test set: 50 sen-
tences without OOV words called ‘Test-A’, another 50 sen-
tences with 30% OOV words called ‘Test-B’. We observe that
‘WE(BiLSTM)’ system performs better on Test-A than Test-B.
However, ‘WE+SE+ME’ system shows similar performance on
both test sets and the performance of ‘WE+SE+ME’ system sig-
nificantly outperforms ‘WE(BiLSTM)’ system. We conclude
that the proposed method can attenuates the OOV problem.

Table 2: Performance of Mongolian PB prediction on different
open test datasets. Test-A does not contains any OOV words,
Test-B contains 30% OOV words.

System TEST-A TEST-B
P R F P R F

WE(BiLSTM) 88.35 89.79 88.56 85.31 85.73 85.30
WE+SE+ME 90.52 90.89 90.14 90.46 91.12 90.09

32.8%47.8% 19.4%

WE
Proposed methods

WE+SE+ME      No preference    WE(BiLSTM)
Figure 4: The percentage preference of Subjective Evaluations.

3.5. Preference Test

We further conducted an A/B preference test on the naturalness
of the synthesised Mongolian speech. A set of 100 sentences
were randomly selected from the test set and the PB labels
were achieved by ‘WE+SE+ME’ and ‘WE(BiLSTM)’ systems.
We carried out comparative evaluation through a DNN-based
Mongolian TTS system [29]. A group of 10 subjects were
asked to choose which one was better in terms of the naturalness
of synthesis speech. The percentage preference is shown in
Figure 4. We can clearly see that the proposed method can
achieve better naturalness of synthesized Mongolian speech as
compared with Unimproved word embedding.

4. Conclusion

In this paper, we investigated syllable and morphological-
level model components for Mongolian PB prediction system,
which allows the system to learn useful features from different
viewpoint. In addition to a BiLSTM operating over entire
words, a separate BiLSTM is used to construct additional
representations from different individual smaller units: syllable,
morpheme. We concatenated these three embeddings into a
new representation which proved absorb richer and multi-view
information than the original word embedding for Mongolian.
In addition, further analysis shows that it is quite robust to the
OOV problem owe to the refined word embedding. This work
can also inspire other agglutinative language research.
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