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ABSTRACT

While neural end-to-end text-to-speech (TTS) is superior to
conventional statistical methods in many ways, the exposure
bias problem in the autoregressive models remains an issue
to be resolved. The exposure bias problem arises from
the mismatch between the training and inference process,
that results in unpredictable performance for out-of-domain
test data at run-time. To overcome this, we propose a
teacher-student training scheme for Tacotron-based TTS by
introducing a distillation loss function in addition to the
feature loss function. We first train a Tacotron2-based TTS
model by always providing natural speech frames to the
decoder, that serves as a teacher model. We then train another
Tacotron2-based model as a student model, of which the
decoder takes the predicted speech frames as input, similar
to how the decoder works during run-time inference. With
the distillation loss, the student model learns the output
probabilities from the teacher model, that is called knowledge
distillation. Experiments show that our proposed training
scheme consistently improves the voice quality for out-of-
domain test data both in Chinese and English systems.

Index Terms— Tacotron, Knowledge Distillation, TTS

1. INTRODUCTION

With the advent of deep learning, end-to-end TTS has shown
many advantages over the conventional TTS techniques [1–
3]. For example, Tacotron-based approaches [4–7] with
an encoder-decoder architecture and attention mechanism
have shown to achieve remarkable performance. In these
techniques, the key idea is to integrate the conventional TTS
pipeline into a unified network and learn the mapping directly
from the <text, wav> pair [7–10]. Furthermore, together
with a neural vocoder [5, 11–15], natural-sounding human-
like speech can be generated.

However, neural end-to-end TTS is still far from perfect.
A typical neural TTS system suffers from the exposure bias
problem [16,17] in the autoregressive model [18] that is used
by the decoder module. Specifically, in training stage, the
decoder generates a frame using its previous frames of natural

Speech samples: https://ttslr.github.io/ICASSP2020/

speech as input, that is called teacher forcing mode. However,
in inference stage, the decoder predicts a frame using its
previously predicted frames as input, that is also called free
running mode. There exists a mismatch between the natural
speech frames and the predicted frames especially for out-
of-domain test data, that leads to unpredictable outcomes,
such as skipping, repeating words, incomplete synthesis and
inappropriate prosody phrase breaks [9, 19–21].

The techniques to improve in-domain performance of
neural TTS frameworks include attention mechanism [22]
and scheduled sampling [23, 24]. The use of scheduled sam-
pling comes with negative effects that include misalignment
between the natural speech frames and the predicted frames
due to the fact that the temporal dependency of the acoustic
sequence is disrupted. The techniques to improve out-of-
domain performance include the GAN-based TTS framework
[25] that introduces both real and generated data sequences
in discriminator training, and more recently, stepwise mono-
tonic attention for neural TTS [9].

In this paper, we propose a novel training scheme, the
teacher-student training scheme, for neural end-to-end TTS
framework, that performs remarkably well for out-of-domain
inference. In this scheme, a teacher model learns the text-
speech mapping from training data in teacher forcing mode,
while a student model learns from both the probability dis-
tribution of the teacher model and the same training data for
teacher model in free running mode. The process of student
learning from teacher model is called knowledge distillation,
and its learning objective is called distillation loss.

The main contributions of this paper are summarized as
follows: 1) we propose a compact method for end-to-end TTS
model; and 2) we propose a teacher-student training scheme
for Tacotron-based TTS model. To our best knowledge, this
is the first implementation of teacher-student training scheme
for Tacotron2 based TTS framework. The proposed training
scheme is validated with out-of-domain test data in Chinese
and English TTS systems.

This paper is organized as follows: In Section 2, we
re-visit the Tacotron2-based TTS framework that serves as
a baseline reference. In Section 3, we study the proposed
teacher-student training scheme. In Section 4, we report the
evaluation results. We conclude the paper in Section 5.
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2. TACOTRON2 BASED TTS

In this paper, we adopt Tacotron2 [5] with scheduled sampling
in the training stage, as a reference baseline. For rapid turn-
around, we use Griffin-Lim [26] waveform reconstruction
instead of WaveNet vocoder in this study. We note that the
selection of waveform generation technique will not affect
our judgment of the effectiveness of the proposed training
scheme.

We illustrate the overall architecture of the reference
baseline in Figure 1, that includes encoder, attention-based
decoder and Griffin-Lim algorithm. The encoder consists of
two components, a CNN [27, 28] based module that has 3
convolution layers, and a LSTM [29, 30] based module that
has a bidirectional LSTM layer. The decoder consists of
four components: a 2-layer pre-net, 2 LSTM layers, a linear
projection layer and a 5-convolution-layer post-net. The
decoder is a standard autoregressive recurrent neural network
that generates the mel-spectrogram features and stop tokens
frame by frame.

During training, the decoder generates a frame in the
scheduled sampling mode. However, at run-time inference,
the decoder performs in free running mode to predict the
future frames. Such trained decoder experiences the mis-
match between the natural speech frames and the predicted
speech frames, and the adverse effect of scheduled sampling
on the temporal dependency of natural acoustic sequence. To
address the above issues during training, we study a teacher-
student training scheme in Section 3.

3. TEACHER-STUDENT TRAINING FOR
TACOTRON2 BASED TTS

In this section, we discuss in detail the teacher model,
the student model, and the teacher-student training scheme.
While both the teacher model and the student model have
identical network architecture as the reference baseline , they
adopt different decoding strategies as illustrated in Figure 2.

In practice, we first train a standard Tacotron2 teacher
model for an end-to-end TTS system under the teacher
forcing mode, that is regarded as the teacher model. As
the teacher model learns under the teacher forcing mode, it
is expected to represent the true distribution of the natural
speech data. We then train another Tacotron2 student model
under the free running mode. The student model is trained
by learning from both ground-truth sequence and the hidden
states of the teacher model simultaneously. By learning
from the hidden states of the teacher model via knowledge
distillation, the student model learns the true distribution of
the natural speech data effectively. As the student model is
trained under the free running mode by using the predicted
speech frames as the input of the decoder, it is expected to
accustom itself to the run-time inference condition.
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Fig. 1. Block diagram of Tacotron2-based reference baseline
that has three modules, encoder, attention-based decoder, and
Griffin-Lim reconstruction algorithm.

3.1. Teacher Model

For the decoder in teacher model, we implement the teacher
forcing mode that predicts a speech frame by taking the
previous natural speech frames in the sequence as the input.

Given a input character sequence x = (x1, x2, ..., xT )
and its target mel-spectrogram features y = (y1, y2, ..., yT ′),
let P (y|x, θ) is the teacher model of which θ is the model
parameters. Teacher model with teacher forcing mode takes
the previous frames y1, ..., yt−1 from the target natural speech
as input to predict the feature frame yt at time step t, as
formulated next,

P (ŷ|x, θ) =
T ′∏
t=1

P (ŷt|y<t, x, θ) (1)

where ŷ is the predicted value and y is from the target natural
speech.

With such decoding mode, the teacher model is expected
to learn the true probability distribution from natural speech
data, that would be very informative for the student model.

3.2. Student Model

The student model has the same network architecture as
the teacher model, except that it has a completely different
decoding mode: free running mode. In this mode, the decoder
predicts a speech frame by taking the previous predicted
speech frames in the sequence as the input. The decoding
process of the student model is defined as:

P (ŷ|x, θ) =
T ′∏
t=1

P (ŷt|ŷ<t, x, θ) (2)

where ŷ is the predicted value.
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Fig. 2. Illustration of the proposed teacher-student training scheme for Tacotron2-based TTS in 2 steps: Step 1, pre-train a
teacher model, that includes teacher encoder and teacher decoder (“Decoder T”); Step 2, use the trained teacher encoder and
teacher decoder to train the student decoder (“Decoder S”) by applying the proposed knowledge distillation approach.

3.3. Knowledge Distillation

Typically, knowledge distillation is a process where a small
model is trained to mimic a pre-trained, larger model [31]. In
this paper, we borrow the idea of knowledge distillation in the
implementation of the teacher-student training scheme.

The idea is to use a teacher model, that has been trained
under the teacher forcing mode, to guide the training of the
student model, that runs under free running mode. As the
teacher model is trained using natural speech frames as the
input of decoder, we expect the output probability distribution
of the teacher model to reflect the true distribution of the
natural speech data. The student model is trained under
the free running mode. Therefore, it is closer to the actual
inference condition. At the same time, the hidden states of the
student model are optimized to be close to those of the teacher
model by way of knowledge distillation. As can be seen in
Figure 2, we define one objective function for the teacher
model, the feature loss. We devise two objective functions
for the student model, one for the feature loss that is the
same as in the teacher model, and another for the knowledge
distillation, or distillation loss.

We formulate the entire process next. The encoder takes
the input character sequence x = (x1, x2, ..., xT ) from the
given text and converts the one-hot vector to continuous high-
level features representation h:

ht = Encoder(ht−1, xt) (3)

The teacher decoder, Decoder T outputs a hidden state st
at each step t:

st = Decoder T(st−1, ŷt−1, σ(ht)) (4)

where σ() represents a function to calculate the context vector
by using location-sensitive attention mechanism.

Similarly, the student decoder Decoder S processes the
same input sequence and generates the hidden state ŝt at each
step t at the same time:

ŝt = Decoder S(ŝt−1, ŷt−1, σ(ht)) (5)

In both the teacher model and the student model, the
feature loss function Lossf ensures that the generated speech
is close the the target speech,

Lossf =

T ′∑
t=1

L2(ŷt, yt) (6)

In the student model, to minimize the discrepancy be-
tween the hidden states s and ŝ of the teacher model and the
student model, we introduce the distillation loss Lossd,

Lossd =
1

T

T∑
t=1

|s− ŝ|2 (7)

Then the total loss function for the student model is
therefore,

Losstotal = Lossf + λ · Lossd (8)

where λ is a trade-off parameter for the two loss terms.
With knowledge distillation, the proposed 2-step teacher-

student training scheme allows for a more compact End-
to-End network than others such as generative adversarial
network [25]. The teacher model is trained with the objective
function Lossf under the teacher forcing mode, while the
student model is trained with a combination of two loss
functions Losstotal under the free running mode.

4. EXPERIMENTS

We develop two systems on Chinese (12 hours of Data
Baker 1) and English (LJSpeech 2) corpora separately. To
verify the effectiveness of knowledge distillation, denoted
as Tacotron2-KD, we choose 2 baseline frameworks: 1)
Tacotron2 with scheduled sampling, denoted as Tacotron2-
SS, and 2) Tacotron2 with free running mode, denoted as
Tacotron2-FR. In all experiments, we use Griffin-Lim algo-
rithm [26] for waveform generation for rapid turn-around.

1https://www.data-baker.com/open source.html
2https://keithito.com/LJ-Speech-Dataset/
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Framework Language MOS WER

Tacotron2-SS en 3.21 23.82%
cn 3.18 9.44%

Tacotron2-KD en 3.93 2.17%
cn 3.94 0.67%

Table 1. Comparison of mean opinion scores (MOS) and
Word Error Rate (WER%) between Tacotron2-SS and the
proposed Tacotron2-KD.

4.1. Experimental Setup
For Chinese experiments, the encoder takes pinyin sequence
with tones as input and generates an 160-channel Mel spec-
trum, two frames at a time, as output. For English experi-
ments, the encoder takes the character sequence as input and
generates an 80-channel Mel spectrum, two frames at a time,
as output. The two type of encoder inputs are collectively
referred to as character in this paper. For both systems, we
use the Adam optimizer with β1 = 0.9, β2 = 0.999 and a
learning rate of 10−3 exponentially decaying to 10−5 starting
after 50k iterations. We also apply L2 regularization with
weight 10−6. Hyper-parameter λ in Equation 8 is set as 1.0
and all the models are trained with a batch size of 32. In
teacher-student model training, we adopt the teacher model
trained with 150k steps as the teacher decoder “Decoder T”,
and train the student decoder “Decoder S” for 150k steps
with the proposed knowledge distillation method.

4.2. Subjective Evaluation
We conduct experiments with out-of-domain test data for
naturalness and robustness evaluation. For Chinese, we
select 500 test samples from the Blizzard Challenge 2019
Chinese dataset [32]. For English, we select 50 test samples
from FastSpeech [20], which are particularly hard for TTS
system. In addition to the 50 test samples, that are single
letters, spellings, repeated numbers, we also include 30 long
sentences, each having 128 characters on average. 20 English
speakers and 15 Chinese speakers participated in the listening
tests. Each subject listens to 80 converted utterances of
his/her native language.

4.2.1. Naturalness Evaluation

We first evaluate the sound quality of the synthesized
speech with mean opinion score (MOS) among Tacotron2-
SS, Tacotron2-FR and the proposed Tacotron2-KD, that is
reported in Table 1. The listeners rate the quality on a 5-
point scale: “5” for excellent, “4” for good, “3” for fair, “2”
for poor, and “1” for bad. It is observed that the proposed
Tacotron2-KD clearly outperforms the baseline Tacotron2-
SS for both English and Chinese data. As we observe that
Tacotron2-FR achieves MOS of 1.33 for English and 2.32 for
Chinese, that is significantly lower than those of Tacotron2-
SS, we exclude Tacotron2-FR in AB preference test.

The AB preference test is reported in Figures 3 and 4,
to compare Tacotron2-KD and Tacotron2-SS, in terms of
voice quality. It is observed that Tacotron2-KD outperforms
Tacotron2-SS consistently for both English and Chinese data.

Tacotron2-SS
Tacotron2-KD

0 20 40 60 80 100
Preference Score (%)

Fig. 3. The preference test between Tacotron2-KD and
Tacotron2-SS on English data, with 95% confidence interval.

0 20 40 60 80 100

Tacotron2-SS
Tacotron2-KD

Preference Score (%)
Fig. 4. The preference test between Tacotron2-KD and
Tacotron2-SS on Chinese data, with 95% confidence interval.

4.2.2. Robustness Evaluation
We further conduct experiments to evaluate the robustness
of synthesized speech for Tacotron2-SS and the proposed
Tacotron2-KD, as reported in Table 1. We measure the
robustness by Word Error Rate (WER %), that reports the
sum of repeats (insertions) and skips (deletions) over the total
number of characters in the listening tests [25]. Repeats and
skips represent the two types of errors that Tacotron2 faces. It
is shown that Tacotron2-KD effectively reduces the errors by
8.77% and 21.65% over the Tacotron2-SS baseline.

A detailed analysis finds that Tacotron2-SS generates 528
skips and 9 repeats for Chinese data, and 251 skips and 12
repeats for English data, while Tacotron2-KD generates only
24 skips for English data and 38 skips for Chinese data. We
don’t observe any repeats from the Tacotron2-KD outputs,
that we think is remarkable.

5. CONCLUSION

We have studied a training scheme for Tacotron2 to perform
high-quality speech synthesis for out-of-domain text, that
overcomes the exposure bias problem. We implement the
teacher-student training scheme through a knowledge distil-
lation objective function. We have conducted a series of
experiments on both Chinese and English to evaluate the
naturalness and robustness. The proposed Tacotron2-KD
framework consistently outperforms the baseline systems in
both languages.

In addition to the naturalness and robustness improve-
ment, we also discover that Tacotron2-KD delivers improved
prosody renderings especially. We will report the prosody
analysis of Tacotron2-KD system in the future.
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